
8-Bit CPU

• Author: University of Waterloo - Fall 2024 ECE 298A
• Description: A basic 8-bit CPU design building off the SAP-1
• Language: Verilog

How it works

This project is a basic 8-bit CPU design building off the SAP-1. It is a combination
of various modules developed as a part of the ECE298A Course at the University of
Waterloo.
The control block is implemented using a 6 stage sequential counter for sequencing
micro-instructions, and a LUT for corresponding op-code to operation(s).
The program counter enumerates all values between 0 and F (15) before looping back
to 0 and starting again. The counter will clear back to 0 whenever the chip is reset.
The Instruction register stores the current instructions and breaks it up into the opcode
and address, which are passed into corresponding locations
The 16 Byte memory module consists of 16 memory locations that store 1 byte each.
The memory allows for both read and write operations, controlled by input signals, as
well as data supplied by the MAR.
The MAR is a register which handles RAM interactions, namely specifying the address
for store/load, as well as the data to be stored.
The 8-bit ripple carry adder assumes 2s complement inputs and thus supports addition
and subtraction. It pushes the result to the bus via tri-state buffer. It also includes a
zero flag and a carry flag to support conditional operation using an external microcon-
troller. These flags are synchronized to the rising edge of the clock and are updated
when the adder outputs to the bus.
The Accumulator register functions to store the output of the adder. It is synchronized
to the positive edge of the clock. The accumulator loads and outputs its value from
the bus and is connected via tri-state buffer. The accumulator’s current value is always
available as an output (and usually connected to the Register A input of the ALU)
The B register stores the second operand for ALU operations which is loaded from
RAM.
The Output register outputs the value from register A onto the uo_out pins.

1

The 8 Bit Bus is driven by various blocks. We allow multiple blocks that are able to
write using tri-state buffers.

Supported Instructions

Mnemonic Opcode Function
HLT 0x0 Stop processing
NOP 0x1 No operation
ADD {address} 0x2 Add B register to A register, leaving result in A
SUB {address} 0x3 Subtract B register from A register, leaving result in A
LDA {address} 0x4 Put RAM data at {address} into A register
OUT 0x5 Put A register data into Output register and display
STA {address} 0x6 Store A register data in RAM at {address}
JMP {address} 0x7 Change PC to {address}

Instruction Notes

• All instructions consist of an opcode (most significant 4 bits), and an address
(least significant 4 bits, where applicable)

Control Signal Descriptions

Control Signal Array Component Function
Cp 14 PC Increments the PC by 1
Ep 13 PC Enable signal for PC to drive the bus
Lp 12 PC Tells PC to load value from the bus
nLma 11 MAR Tells MAR when to load address from the bus
nLmd 10 MAR Tells MAR when to load memory from the bus
nCE 9 RAM Enable signal for RAM to drive the bus
nLr 8 RAM Tells RAM when to load memory from the MAR
nLi 7 IR Tells IR when to load instruction from the bus
nEi 6 IR Enable signal for IR to drive the bus
nLa 5 A Reg Tells A register to load data from the bus
Ea 4 A Reg Enable signal for A register to drive the bus
Su 3 ALU Activate subtractor instead of adder
Eu 2 ALU Enable signal for Adder/Subtractor to drive the bus

2

Control Signal Array Component Function
nLb 1 B Reg Tells B register to load data from the bus
nLo 0 Output Reg Tells Output register to load data from the bus

Sequencing Details

• The control sequencer is negative edge triggered, so that control signals can be
steady for the next positive clock edge, where the actions are executed.

• In each clock cycle, there can only be one source of data for the bus, however
any number components can read from the bus.

• Before each run, a CLR signal is sent to the PC and the IR.

Instruction Micro-Operations

Stage HLT NOP STA JMP
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 ** - nEi, nLma nEi, Lp
T4 - - Ea, nLmd
T5 - - nLr

Stage LDA ADD SUB OUT
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 nEi, nLma nEi, nLma nEi, nLma Ea, nLo
T4 nCE, nLa nCE, nLb nCE, nLb -
T5 - Eu, nLa Su, Eu, nLa -

Instruction Micro-Operations Notes

• First three micro-operations are common to all instructions.

3

• NOP operation executes only the first three micro-operations.

• Cp signal is not asserted during the HLT instruction in T2.
• ** Halt internal register is set to 1. More on this later

Programmer

Stage Control Signals Programmer specific signals
T0 Ep, nLMA ready = 1
T1 Cp ready = 0
T2 - -
T3 nLmd read_ui_in = 1
T4 nLr read_ui_in = 0, done_load = 1
T5 - done_load = 0

Detailed Overview

T0: Control Signals the same as the typical default microinstruction – load the MAR
with the address of the next instruction. Assert ready signal to alert MCU programmer
(off chip) that CPU is ready to accept next line of RAM data.
T1: Increment the PC, the same as the typical default microinstruction. De-assert
ready signal since the MCU programmer is polling for the rising edge.
T2: Do nothing to allow an entire clock cycle for programmer to prepare the data.
T3: Load the MAR with the data from the bus. Also, assert the read_ui_in signal
which controls a series of tri-state buffers, attaches the ui_in pins straight to the bus.
T4: Load the RAM from the MAR. De-assert the read_ui_in signal (disconnect the
ui_in pins from driving the bus since the ui_in pin data might be now inaccurate).
Assert the done_load signal to indicate to the MCU that the chip is done with the
ui_in data.
T5: De-assert done_load signal.

4

Programmer Notes

The MCU must be able to provide the data to the ui_in pins (steady) between receiving
the ready signal (assume worst case end of T0), and the bus needing the values (assume
worst case beginning of T3).
Therefore, the MCU must be able to provide the data at a maximum of 2 clock
periods.

IO Table: CB (Control Block)

Name Verilog Description I/O Width Trigger
clk clk Clock signal I 1 Edge Transition
resetn rst_n Set stage to 0 I 1 Active Low
opcode opcode Opcode from IR I 4 NA
out control_signals Control Signal Array O 15 NA
programming programming Programming mode I 1 Active High
done_load done_load Executed Load during prog O 1 Active High
read_ui_in read_ui_in Push ui_in onto bus O 1 Active High
ready ready_for_ui Ready to prog next byte O 1 Active High
HF HF Halting flag O 1 Active High

IO Table: PC (Program Counter)

Name Verilog Description I/O Width Trigger
bus bus[3:0] Connection to bus IO 4 NA
clk clk Clock signal I 1 Falling Edge
clr_n rst_n Clear to 0 I 1 Active Low
cp Ep Allow counter increment I 1 Active High
ep Cp Output to bus I 1 Active High
lp Lp Load from bus I 1 Active High

PC (Program Counter) Notes

• Counter increments only when Cp is asserted, otherwise it will stay at the current
value.

5

• Ep controls whether the counter is being output to the bus. If this signal is low,
our output is high impedance (Tri-State Buffers).

• When CLR is low, the counter is cleared back to 0, the program will restart.
• The program counter updates its value on the falling edge of the clock.
• Lp indicates that we want to load the value on the bus into the counter (used for

jump instructions). When this is asserted, we will read from the bus and instead
of incrementing the counter, we will update each flip-flop with the appropriate
bit and prepare to output.

• The least significant 4 bits from the 8-bit bus will be used to store the value on
the program counter (0-15). Will be read from (JMP asserted) and written to
(Ep asserted).

• clr_n has precedence over all.
• Lp takes precedence over Cp.

IO Table: Instruction Register (IR)

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock signal I 1 Rising Edge
clear ~rst_n Clear to 0 I 1 Active High
opcode opcode Opcode from IR O 4 NA
n_load nLi Load from Bus I 1 Active Low
n_enable nEi Output to bus O 1 Active Low

Instruction Register (IR) Notes

• The A Register updates its value on the rising edge of the clock.
• nEi controls whether the instruction is being output to the bus[3:0]. If this signal

is high, our output is high impedance (Tri-State Buffers).
• nLi indicates that we want to load the value on the bus into the IR. When this

is low, we will read from the bus and write to the register.
• When clear is high, the opcode is cleared back to NOP.
• IR always outputs the current value of the register to CB.

IO Table: RAM

6

Name Verilog Description I/O Width Trigger
addr mar_to_ram_addr Address for read/write I 4 NA
data_in mar_to_ram_data Data for write I 8 NA
data_out bus Connection to bus O 8 NA
lr_n nLr Load data from MAR I 1 Active Low
ce_n nCE Output to bus I 1 Active Low
clk clk Clock Signal I 1 Rising edge
rst_n ’1’ Clear RAM I 1 Active Low

RAM Notes

• Addressing: The memory is 4-bit addressable, where the address specifies which
register (out of 16) is being accessed for reading or writing.

• Write operation: A byte of data is written to specific register in RAM, where
the location is determined by the address. Requires write enable lr_n signal as
active (low) and the clock edge to occur.

• Read operation: Data can be read from a specific register in RAM determined
by the input address. Requires chip enable ce_n signal as active (low). The
data is output on the bus, and it is updated on the clock edge.

• Output: Data is presented on the bus line when the chip is enabled for reading,
and high-impedance (Z) otherwise.

• RAM is never reset, rather, we always flash it.

IO Table: MAR

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock signal I 1 Rising Edge
addr mar_to_ram_addr Address for read/write O 4 NA
data mar_to_ram_data Data for write O 8 NA
n_load_data nLmd Load data from Bus I 1 Active Low
n_load_addr nLma Load address from Bus I 1 Active Low

MAR Notes

• The MAR updates its value on the rising edge of the clock.

7

• nLmd indicates that we want to load the value on the bus into the data register.
When this is low, we will read from the bus and write to the register.

• nLma indicates that we want to load the value on the bus[3:0] into the address
register. When this is low, we will read from the bus and write to the register.

• MAR always outputs the current value of the data and address registers to the
RAM module.

IO Table: ALU (Adder/Subtractor)

Name Verilog Description I/O Width Trigger
clk clk Clock Signal I 1 Rising edge
enable_out Eu Output to bus I 1 Active High
Register A reg_a Accumulator Register I 8 NA
Register B reg_b Register B I 8 NA
subtract sub Perform Subtraction I 1 Active High
bus bus Connection to bus O 8 NA
Carry Out CF Carry-out flag O 1 Active High
Result Zero ZF Zero flag O 1 Active High

ALU (Adder/Subtractor) Notes

• Eu controls whether the counter is being output to the bus. If this signal is low,
our output is high impedance (Tri-State Buffers).

• A Register and B Register always provide the ALU with their current values.
• When sub is not asserted, the ALU will perform addition: Result = A + B
• When sub is asserted, the ALU will perform subtraction by taking 2s complement

of operand B: Result = A - B = A + !B + 1
• Carry Out and Result Zero flags are updated on rising clock edge.

IO Table: Accumulator (A) Register

Name Verilog Description I/O Width Trigger
clk clk Clock Signal I 1 Rising edge
bus bus Connection to bus IO 8 NA
load nLa Load from bus I 1 Active Low
enable_out Ea Output to bus I 1 Active High

8

Name Verilog Description I/O Width Trigger
Register A reg_a Accumulator Register O 8 NA
clear rst_n Clear Signal I 1 Active Low

Accumulator (A) Register Notes

• The A Register updates its value on the rising edge of the clock.
• Ea controls whether the counter is being output to the bus. If this signal is low,

our output is high impedance (Tri-State Buffers).
• nLa indicates that we want to load the value on the bus into the A Register.

When this is low, we will read from the bus and write to the register.
• When CLR is low, the register is cleared back to 0.
• (Register A) always outputs the current value of the register to the ALU.

IO Table: B Register

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock Signal I 1 Rising edge
n_load nLb Load from bus I 1 Active Low
value reg_b B Register value O 8 NA

B Register Notes

• The B Register updates its value on the rising edge of the clock.
• nLb indicates that we want to load the value on the bus into the B Register.

When this is low, we will read from the bus and write to the register.
• B Register always outputs the current value of the register to the ALU.

IO Table: Output Register

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock Signal I 1 Rising edge

9

Name Verilog Description I/O Width Trigger
n_load nLo Load from bus I 1 Active Low
value uo_out B Register value O 8 NA

Output Register Notes

• The Output Register updates its value on the rising edge of the clock.
• nLo indicates that we want to load the value on the bus into the B Register.

When this is low, we will read from the bus and write to the register.

How to test

Provide input of op-code. Check that the correct output bits are being asserted/de-
asserted properly.

Setup

1. Power Supply: Connect the chip to a stable power supply as per the voltage
specifications.

2. Clock Signal: Provide a stable clock signal to the clk pin.
3. Reset: Ensure the rst_n pin is properly connected to allow resetting the chip.

Testing Steps

1. Initial Reset:

• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock
signal, and then pulling pulling the rst_n high to initialize the chip.

2. Load Program into RAM:

• Use the ui_in pins to load a test program into the RAM. Ensure the
programming pin is high during this process.

• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock
signal, and then pulling pulling the rst_n high to initialize the chip.

• Wait for the ready_for_ui signal to go high, indicating that the CPU is
ready to accept data.

10

• Provide the first byte of data on the ui_in pins.
• Wait for the done_load signal to go high, indicating that the data has been

successfully loaded into the RAM.
• Repeat the process for each byte of data:

– Wait for ready_for_ui to go high.
– Provide the next byte of data on the ui_in pins.
– Wait for done_load to go high.

• Example program data:

0x10, # NOP
0x73, # JMP 0x3
0x00, # HLT
0x4F, # LDA 0xF
0x2E, # ADD 0xE
0x6D, # STA 0xD
0x50, # OUT
0x3F, # SUB 0xF
0x50, # OUT
0x4D, # LDA 0xD
0x50, # OUT
0x72, # JMP 0x2
0x10, # NOP
0x00, # Padding/empty instruction
0x02, # Constant 2 (data)
0x01 # Constant 1 (data)

3. Run Test Program:

• Set the programming pin low to exit programming mode.
• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock

signal, and then pulling pulling the rst_n high to initialize the chip.
• Monitor the uo_out and uio_out pins for expected outputs.
• Verify the control signals and data outputs at each clock cycle.

4. Functional Tests:

• Perform specific functional tests for each instruction (e.g., ADD, SUB,
LDA, STA, JMP, HLT).

• Verify the correct execution of each instruction by checking the output and
control signals.

11

Example Test Cases

• HLT Instruction: Example program data:

0x4E, # LDA 0xE
0x50, # OUT
0x00, # HLT
0x4F, # LDA 0xF
0x50, # OUT
0x00, # HLT
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x09, # Constant 9 (data)
0xFF # Constant 255 (data)

This program should first output 9 and then NOT change that to 255. HF
should be set to 1

• NOP Instruction: Example program data:

0x42, # LDA 0x2
0x50, # OUT
0x10, # NOP / Constant 16 (data)
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x4E, # LDA 0xF
0x50, # OUT
0x1F, # NOP
0x1F, # NOP / Constant 31 (data)

12

This program should flash the lower 4 bits of the output register on and off with
different on/off times

• NOP Instruction: Example program data:

0x42, # LDA 0x2
0x50, # OUT
0x10, # NOP / Constant 16 (data)
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x4E, # LDA 0xF
0x50, # OUT
0x1F, # NOP
0x1F, # NOP / Constant 31 (data)

This program should flash the lower 4 bits of the output register on and off with
different on/off times

• ADD Instruction Example program data:

0x50, # OUT
0x2E, # ADD 0xE
0x70, # JMP 0x0
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x01, # Constant 1 (data)
0xFF, # Padding/empty instruction

13

This program should add 1 to the A register, display it and loop back to the
start. The output should be a counter from 0 to 255, then repeat.
CF should be set to 1 when the A register overflows, and 0 when it doesn’t.
CF=1 happens when the A register is 255 and 1 is added to it.
ZF should be set to 1 when the A register is 0, and 0 otherwise.

• SUB Instruction Example program data:

0x50, # OUT
0x3E, # SUB 0xE
0x70, # JMP 0x0
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x01, # Constant 1 (data)
0xFF, # Padding/empty instruction

This program should subtract 1 to the A register, display it and loop back to the
start. The output should be a counter from 255 to 0, then repeat.
CF should be set to 1 when the A register overflows, and 0 when it doesn’t.
CF=0 happens when the A register is 0 and 1 is subtracted from it.
ZF should be set to 1 when the A register is 0, and 0 otherwise.

• LDA Instruction
See above for example program data.

• OUT Instruction
See above for example program data.

• STA Instruction
Example program data:

14

0x4E, # LDA 0xE
0x2F, # ADD 0xF
0x5F, # OUT
0x6E, # STA 0xF
0x2F, # ADD 0xE
0x5F, # OUT
0x00, # HLT
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x09, # Constant 9 (data)
0xFF # Constant 255 (data) -> Constant 8 (data)

This program should load 9 to the A register, add 255 to it, resulting in 8 (CF
should set to 1) display it, store it in 0xF, add 9 to it, resulting in 17 (CF should
set to 0) and display it. Then, it should halt, and set HF to 1.

• JMP Instruction
Example program data:

0x44, # LDA 0x4
0x5F # OUT
0x7D, # JMP 0xD
0x0F, # HLT
0x00, # Constant 0 (data)
0xFF, # Constant 5 (data)
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x45, # LDA 0x5
0x5F # OUT
0x0F, # HLT

15

This program should load 0x4 (0) to the A register, display it, NOT HALT, jump
to 0xD, then load 0x5 (255) to the A register, display it, and halt. HF should
be set to 1.

Acknowledgements

• Darius Rudaitis, Eshann Mehta: RAM
• Evan Armoogan, Catherine Ye: PC
• Damir Gazizullin, Owen Golden: ALU, Accumulator
• Roni Kant, Jeremy Kam: MAR, B Register, Output Register, Instruction Regis-

ter
• Gerry Chen, Siddharth Nema: Control Block and Programmer
• ECE 298A Course Staff: Prof. John Long, Prof. Vincent Gaudet, Refik Yalcin

Pinout

Input Output Bidirectional
0 prog_in_0 output_register_0 in_programming
1 prog_in_1 output_register_1 out_ready_for_ui
2 prog_in_2 output_register_2 out_done_load
3 prog_in_3 output_register_3 out_CF
4 prog_in_4 output_register_4 out_ZF
5 prog_in_5 output_register_5 out_HF
6 prog_in_6 output_register_6
7 prog_in_7 output_register_7

16

	8-Bit CPU
	How it works
	Supported Instructions
	Instruction Notes

	Control Signal Descriptions
	Sequencing Details
	Instruction Micro-Operations
	Instruction Micro-Operations Notes

	Programmer
	Detailed Overview
	Programmer Notes

	IO Table: CB (Control Block)
	IO Table: PC (Program Counter)
	PC (Program Counter) Notes

	IO Table: Instruction Register (IR)
	Instruction Register (IR) Notes

	IO Table: RAM
	RAM Notes

	IO Table: MAR
	MAR Notes

	IO Table: ALU (Adder/Subtractor)
	ALU (Adder/Subtractor) Notes

	IO Table: Accumulator (A) Register
	Accumulator (A) Register Notes

	IO Table: B Register
	B Register Notes

	IO Table: Output Register
	Output Register Notes

	How to test
	Setup
	Testing Steps
	Example Test Cases

	Acknowledgements
	Pinout

